DNA methylation and histone H3-K9 modifications contribute to MUC17 expression.

نویسندگان

  • Sho Kitamoto
  • Norishige Yamada
  • Seiya Yokoyama
  • Izumi Houjou
  • Michiyo Higashi
  • Masamichi Goto
  • Surinder K Batra
  • Suguru Yonezawa
چکیده

MUC17 glycoprotein is a membrane-associated mucin that is mainly expressed in the digestive tract. It has been suggested that MUC17 expression is correlated with the malignancy potential of pancreatic ductal adenocarcinomas (PDACs). In the present study, we provided the first report of the MUC17 gene expression through epigenetic regulation such as promoter methylation, histone modification and microRNA (miRNA) expression. Near the transcriptional start site, the DNA methylation level of MUC17-negative cancer cell lines (e.g. PANC1) was high, whereas that of MUC17-positive cells (e.g. AsPC-1) was low. Histone H3-K9 (H3-K9) modification status was also closely related to MUC17 expression. Our results indicate that DNA methylation and histone H3-K9 modification in the 5' flanking region play a critical role in MUC17 expression. Furthermore, the hypomethylation status was observed in patients with PDAC. This indicates that the hypomethylation status in the MUC17 promoter could be a novel epigenetic marker for the diagnosis of PDAC. In addition, the result of miRNA microarray analysis showed that five potential miRNA candidates existed. It is also possible that the MUC17 might be post-transcriptionally regulated by miRNA targeting to the 3'-untranslated region of its mRNA. These understandings of the epigenetic changes of MUC17 may be of importance for the diagnosis of carcinogenic risk and the prediction of outcomes for cancer patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells.

In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylat...

متن کامل

Interplay between Two Epigenetic Marks DNA Methylation and Histone H3 Lysine 9 Methylation

BACKGROUND The heterochromatin of many eukaryotes is marked by both DNA methylation and histone H3 lysine 9 (H3-K9) methylation, though the exact relationship between these epigenetic modifications is unknown. In Neurospora, H3-K9 methylation is required for the maintenance of all known DNA methylation. In Arabidopsis, H3-K9 methylation directs some of the CpNpG and asymmetric methylation. Howe...

متن کامل

K4, K9 and K18 in human histone H3 are targets for biotinylation by biotinidase.

Histones are modified post-translationally, e.g. by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. The aims of this study were to identify biot...

متن کامل

Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos.

Epigenetic modifications of the genome, such as covalent modification of histone residues, ensure appropriate gene activation during pre-implantation development, and are probably involved in the asymmetric reprogramming of the parental genomes after fertilization. We investigated the methylation patterns of histone H3 at lysine 9 (H3/K9), and the regulatory mechanism involved in the asymmetric...

متن کامل

Dependence of histone modifications and gene expression on DNA hypermethylation in cancer.

We examined the relationship between aberrant DNA hypermethylation and key histone code components at a hypermethylated, silenced tumor suppressor gene promoter in human cancer. In lower eukaryotes, methylated H3-lysine 9 (methyl-H3-K9) determines DNA methylation and correlates with repressed gene transcription. Here we show that a zone of deacetylated histone H3 plus methyl-H3-K9 surrounds a h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glycobiology

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2011